Search results for "Nondeterministic finite automaton with ε-moves"

showing 4 items of 4 documents

Quantum Finite Multitape Automata

1999

Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages can be recognized by quantum finite automata. A. Ambainis and R. Freivalds [1] proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by deterministic or probabilistic finite automata. This …

Discrete mathematicsProbabilistic finite automataFinite-state machineNested wordComputer scienceDeterministic context-free grammarTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonMobile automatonNondeterministic finite automaton with ε-movesDeterministic finite automatonDFA minimizationRegular languageDeterministic automatonProbabilistic automatonContinuous spatial automatonAutomata theoryQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Representation of Autonomous Automata

2001

An autonomous automaton is a finite automaton with output in which the input alphabet has cardinality one when special reduced. We define the transition from automata to semigroups via a representation successful if given two incomparable automata (neither simulate the other), the semigroups representing the automata are distinct. We show that representation by the transition semigroup is not successful. We then consider a representation of automata by semigroups of partial transformations. We show that in general transition from automata to semigroups by this representation is not successful either. In fact, the only successful transition presented is the transiton to this semigroup of par…

Krohn–Rhodes theoryDiscrete mathematicsNested wordFinite-state machineMathematics::Operator AlgebrasComputer scienceSemigroupTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonAutomatonNondeterministic finite automaton with ε-movesStochastic cellular automatonDeterministic finite automatonDFA minimizationDeterministic automatonContinuous spatial automatonSpecial classes of semigroupsQuantum finite automataAutomata theoryTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct

An Approximate Determinization Algorithm for Weighted Finite-State Automata

2001

Nondeterministic weighted finite-state automata are a key abstraction in automatic speech recognition systems. The efficiency of automatic speech recognition depends directly on the sizes of these automata and the degree of nondeterminism present, so recent research has studied ways to determinize and minimize them, using analogues of classical automata determinization and minimization. Although, as we describe here, determinization can in the worst case cause poly-exponential blowup in the number of states of a weighted finite-state automaton, in practice it is remarkably successful. In extensive experiments in automatic speech recognition systems, deterministic weighted finite-state autom…

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineTheoretical computer scienceGeneral Computer ScienceComputer scienceApplied MathematicsComputer Science ApplicationsAutomatonNondeterministic algorithmNondeterministic finite automaton with ε-movesComputer Science::SoundDeterministic automatonTheory of computationStandard testMinificationAlgorithmComputer Science::Formal Languages and Automata TheoryAlgorithmica
researchProduct

Quantum versus Probabilistic One-Way Finite Automata with Counter

2001

The paper adds the one-counter one-way finite automaton [6] to the list of classical computing devices having quantum counterparts more powerful in some cases. Specifically, two languages are considered, the first is not recognizable by deterministic one-counter one-way finite automata, the second is not recognizable with bounded error by probabilistic one-counter one-way finite automata, but each recognizable with bounded error by a quantum one-counter one-way finite automaton. This result contrasts the case of one-way finite automata without counter, where it is known [5] that the quantum device is actually less powerful than its classical counterpart.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordComputer scienceTimed automatonBüchi automatonω-automatonNondeterministic finite automaton with ε-movesTuring machinesymbols.namesakeDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataDeterministic system (philosophy)Two-way deterministic finite automatonNondeterministic finite automatonDiscrete mathematicsFinite-state machineQuantum dot cellular automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonProbabilistic automatonsymbolsAutomata theoryComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct